

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

2644

Probability & Statistics 4

Friday

17 JANUARY 2003

Afternoon

1 hour 20 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF8)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

This question paper consists of 4 printed pages.

Turn over

(i) the value of a,

[2]

- The probability generating function of the random variable X is given by $G(t) = e^{2t-a}$, where a is a 1
 - constant. Find
 - [2] (ii) E(X).
 - At a particular restaurant 55% of customers order an aperitif and 80% order wine. 30% of customers 2 order wine without ordering an aperitif.
 - [2] (i) Find the percentage of customers who order both an aperitif and wine.
 - (ii) Given that a customer ordered wine, find the probability that the customer ordered an aperitif. [2]
 - (iii) 40% of customers order a starter with their meal, independently of whether they order an aperitif and independently of whether they order wine. Show that at most 29% of customers order an [3] aperitif, a starter and wine.
 - 3 (i) Find the number of different arrangements of these letters.

$$XXXYYYYY$$
 [2]

The continuous random variables X and Y have identical distributions. Three observations of X and five observations of Y are taken and placed in rank order, smallest first. The sum of the ranks of the values of X is denoted by R.

(ii) Assuming that all arrangements are equally likely, find $P(R \le 8)$. [2]

A chemical is produced in two factories, A and B. A customer who obtains the chemical from both factories suspects that there is a greater amount of impurity in the chemical produced by factory A than in the chemical produced by factory B. An analysis of five random samples from factory A and three random samples from factory B gave the following percentages of impurity.

> Factory A 3.5 4.7 3.8 5.2 4.6 Factory B 2.6 1.8 4.5

(iii) Use a suitable non-parametric test, at the 5% significance level, to decide whether there is evidence to support the customer's suspicion. [4]

- JANUARY 2003

4 The discrete random variables X and Y have the joint probability distribution given in the following table.

			X	
		0	1	2
	0	0	0	0.1
Y	1	0	0.2	0.3
	2	0.1	0.3	0

- (i) Show that Var(X) = 0.41 and write down Var(Y). [4]
- (ii) Tabulate the probability distribution of T, where T = X + Y, and use it to find Var(T). [3]
- (iii) Hence or otherwise find Cov(X, Y) and state, giving a reason, whether X and Y are independent. [3]
- 5 The time, X months, to the first breakdown of a particular make of washing machine may be modelled by a continuous random variable with probability density function given by

$$f(x) = \begin{cases} \frac{4a^4}{x^5} & x \ge a, \\ 0 & \text{otherwise,} \end{cases}$$

where a is an unknown positive constant.

(i) Find
$$E(X)$$
. [2]

Two randomly chosen washing machines break down independently after X_1 and X_2 months.

- (ii) Show that T, where $T = \lambda X_1 + (\frac{3}{4} \lambda)X_2$, is an unbiased estimator of a for any value of the constant λ .
- (iii) Find the value of λ for which the variance of T is a minimum. [3]
- (iv) Given that $X_1 = 3.45$ and $X_2 = 1.75$, estimate a using this value of λ . Explain why, in this case, this is not a useful estimate of a. [2]
- 6 The random variable X has a probability density function which involves a parameter α . The moment generating function of X is $(1-2t)^{-\alpha}$. Find

(i)
$$E(X)$$
, [2]

(ii)
$$Var(X)$$
. [2]

This distribution, with parameter α , is denoted by $D(\alpha)$. The sum of three observations of a random variable having a D(2) distribution and one observation of a random variable having a D(1) distribution is denoted by S. All observations are independent.

- (iii) Write down, in simplified form, the moment generating function of S, and hence identify the distribution of S in terms of D.
- (iv) Find $E(S^3)$. [3]

Portfolios of students' work, used for assessment on a university course, are each marked independently by two lecturers, Ms Abel and Mr Barnes. The marks given to a random sample of 10 students in the year 2002 are as follows.

Student	1	2	3	4	5	6	7	8	9	10
Ms Abel's mark	37	48	62	24	53	72	41	29	53	24
Mr Barnes' mark										

- (i) Use an appropriate Wilcoxon test, at the 5% significance level, to decide whether the average marks given by Ms Abel and Mr Barnes are different. [5]
- (ii) Why, in this case, is a Wilcoxon test preferred to a sign test?

[1]

The final mark awarded is the sum of the two marks, as shown in the table below.

Student	1	2	3	4	5	6	7	8	9	10
Final mark	78	102	136	50	119	134	75	61	115	53

The median mark of all students for this portfolio in 2001 was 120.

- (iii) Use a sign test, at the 10% significance level, to decide whether there is evidence that the median mark has decreased. [5]
- (iv) Give a reason why, in this case, a sign test may be more appropriate than a Wilcoxon test. [1]

(5) (1) \int 44x4dx = \left(-\frac{4a^4}{3x^2} \right) = \frac{4a}{3} \B (ii) λ , $\frac{4a}{3} + \left(\frac{3}{4} - \lambda\right) \frac{4a}{3} = a$ so unbiased [1] (iii) Var = [22+(3-4)2]62=(22-3/2+2/6)62 Differentiate: Min. for 42=3, 2=3, 13 (iv) 3 x345 + 3 x x75 = 1.45 but this is bigger than 1.75 and clearly a a = 1.75. B (1) M'(0) = 2K A (i) m"/0) = 4x(x+1) : V(x) = 4x2+4x-4x2=4x 1 = D(7) (iii) [(-2t)]3[(1-2t]] = (1-2t)-1 (iv) $\frac{d^3}{dL^3}(1-2t)^{\frac{3}{4}} = -\frac{3}{4} \cdot 4 \cdot (-2)^3 (1-2t)^{-\frac{1}{10}}$.. M(3)(0)= 4 6 12 2 13 10 -7 3 9 5 6 -8 -6 2 74 Mark 3 5 9 l Q=14, 1241 6T=14 (production median) Ho: madian difference is 0 H: median difference \$0. Crifical value lo 8. 14>8 sodo not reject lo. insufficient evidence that average more differ. [] (ii) Wilcron lest uses more information. B(10,0.5): P(=2) = 0.0547 Rigert Ho. Significant widow that we sim with his decreased. [Ho: M=120. H: M<120, Where mistle] (iv) To use home we would need to hum that the degladution of machs was 瓜 symmetric. [12]